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Abstract

Nonlinear rotor dynamic is characterized by parametric excitation of both linear and nonlinear terms caused by

centrifugal and Coriolis forces when formulated in a moving frame of reference. Assuming harmonically varying support

point motions from the tower, the nonlinear parametric instability of a wind turbine wing has been analysed based on a

two-degrees-of-freedom model with one modal coordinate representing the vibrations in the blade direction and the other

vibrations in edgewise direction. The functional basis for the eigenmode expansion has been taken as the linear undamped

fixed-base eigenmodes. It turns out that the system becomes unstable at certain excitation amplitudes and frequencies. If

the ratio between the support point motion and the rotational frequency of the rotor is rational, the response becomes

periodic, and Floquet theory may be used to determine instability. In reality the indicated frequency ratio may be irrational

in which case the response is shown to be quasi-periodic, rendering the Floquet theory useless. Moreover, as the excitation

frequency exceeds the eigenfrequency in the edgewise direction, the response may become chaotic. For this reason stability

of the system has in all cases been evaluated based on a Lyapunov exponent approach. Stability boundaries are determined

as a function of the amplitude and frequency of the support point motion, the rotational speed, damping ratios and

eigenfrequencies in the blade and edgewise directions.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear rotor dynamic is characterized by parametric excitation when formulated in a moving frame of
reference, in combination with the translational and rotational support point motions of the hub. Specific for
wind turbine wings is that the parametric excitation is controlled by four different frequencies. First, the wing
is rotating with the circular frequency O0, the so-called rotational speed, which causes both parametric and
additive excitations of the wing. The tower performs narrow-banded vibrations with a central circular
frequency o0, which causes correspondingly support point motions and rotations of the hub. For a three-
bladed wind turbine o0 is close to 3O0 due to the changes in the wind load when the individual wings are in top
and bottom positions of the incoming shear wind field. Finally, nonlinear interactions and related parametric
instability depend on the ratio between the fundamental fixed base circular eigenfrequencies o1 and o2 in the
blade and edgewise directions. For larger wind turbine wings the frequency ratio o2=o1 ’ 2 is often met. The
indicated almost rational frequency ratio may induce specific so-called 2:1 internal resonances and related
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parametric instabilities. Larsen and Nielsen [1] derived the nonlinear rotor equations of motion retaining up to
cubic inertial and geometric nonlinear coupling terms for a rotating Bernoulli–Euler beam subjected to
support point motion. The equations of motion were reduced to a two-degrees-of-freedom (2dof) system by a
truncated modal expansion with one degree-of-freedom (1dof) in the blade direction and 1dof in the edgewise
direction. The important nonlinear coupling terms under 2:1 internal resonance due to harmonically varying
support point motion were identified, and the reduced system was analysed with respect to variable modal
damping and excitation amplitude.

Stability of motions may be studied by a variety of techniques. A quantitative stability analysis of nonlinear
systems may be performed by various perturbation methods, see e.g. Ref. [2]. For nonlinear systems, which
experience periodic response, the stability may be analysed by the Floquet theory [3]. Nonlinear systems may
experience almost periodic or even chaotic response. Under such conditions the Floquet theory is no longer
applicable. To investigate the stability of such cases techniques based on a Lyapunov exponent may be used.
Wolf et al. [4] presented an algorithm for determining the entire spectrum of Lyapunov exponents from a time
series of displacement components by means of the Gram–Schmidt reorthonormalization procedure. Also
algorithms for finding only the largest Lyapunov exponent or the two largest Lyapunov exponents were
devised. The procedures described by Wolf et al. are widely used in the literature.

Several extensive investigations on the onset of chaotic motions of the Duffing oscillator have been
performed based on these algorithms, see e.g. Refs. [5,6]. To and Liu [7] investigated the chaotic behaviour of
the Duffing oscillator both under deterministic, stochastic and combined deterministic and stochastic
excitations by means of an averaged Lyapunov exponent and information dimension. Castanier and Pierre [8]
analysed wave propagation and localization phenomena in multi-coupled systems using both the algorithm by
Wolf et al. and a perturbation technique for finding the first Lyapunov exponent. Comparison of the said
methods and Monte Carlo analysis were made, and good agreement was demonstrated in several cases. Shin
and Hammond [9] showed that the conventional Lyapunov exponent is very useful for quantification of
chaotic dynamics, but only represent the average long-term behaviour. They introduced the so-called
instantaneous Lyapunov exponents for describing the local non-stationary behaviour of the system.
Numerical examples were given for the Van der Pol and Duffing oscillators, where changes in damping were
detected efficiently. The theory was also used to determine changes in damping properties of an experimental
system.

Parametric excitation due to support point motion of nonlinear systems is also widely investigated in the
literature. Ge and Tsen [10] analysed the dynamic behaviour of a 2dof rigid body with vibrating support. The
Lyapunov direct method was used to determine the stability conditions, and various algorithms were used to
effectively control the chaotic behaviour. In the same manner Ge and Shiue [11] analysed the dynamic stability
of a tachometer subjected to vertical harmonic support vibrations. In a series of papers Dwivedy and Kar
[12–16] investigated the parametric stability of a base excited cantilever beam with an attached mass retaining
up to cubic nonlinearities. They analysed the steady state, periodic and chaotic responses under parametric
and internal resonances by the methods of multiple scales and normal forms. Nayfeh [17] analysed a 2dof
nonlinear system with quadratic nonlinearities subjected to parametric excitation, and a multi-degrees-of-
freedom system under parametric excitation in Ref. [18]. Hanagud and Sarkar [19] analysed a cantilever beam
attached to a moving support. The formulation was shown to be valid for large displacements, and the
stability characteristics of a beam under spin-up manoeuvre was studied. It was demonstrated that structural
nonlinearities play a major role in the response characteristics.

The present paper deals with the onset of chaotic behaviour and parametric instability of nonlinear
vibrations of wind turbine wings. In this study, which is based on the reduced 2dof model by Larsen and
Nielsen [1], the amplitude, the frequency of the support point motion and the rotational speed are varied,
along with the eigenfrequency ratio o2=o1 and the damping ratio z1 of the blade mode. The damping ratio
may vary significantly dependent on the characteristics of the boundary layer flow over the profile. The flow
may be fully attached, partly separated or fully separated. The latter case occurs during large oscillations
(dynamic stall), with the implication that the significant aerodynamic damping during fully attached flow
conditions is lost. When the ratio between the tower frequency and rotational frequency o0=O0 is rational the
response becomes periodic and stability of the solution at certain parameter values may be evaluated using
Floquet theory. If the response becomes chaotic or almost periodic due to irrational excitation frequency
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ratios and nonlinear effects the Floquet theory is no longer applicable. Instead the stability may be evaluated
using the Lyapunov coefficient. Since, the Floquet theory only is applicable in small regions of the investigated
parameter space, the Lyapunov exponent approach will be used to determine stability of the system
throughout this study. Due to the often met frequency ratios of o2=o1 ’ 2 and o0=O0 ’ 3 the following
analyses are focused around these.

2. Modelling of the system

2.1. Geometrical description

A global ðx1;x2;x3Þ-coordinate system is placed at the bottom of the tower with the x1-axis oriented parallel
to the rotor axes as shown in Fig. 1. To simplify matters the tilt angle and the cone angle of the wind turbine
are assumed to be zero. The tower–nacelle system deforms a rotation and displacement of the hub occurs,
which introduce a rotation of the rotor plane. Additionally, a blade fixed ðx01; x

0
2; x
0
3Þ-coordinate system with

origin at the hub and with the (x02;x
0
3)-plane is introduced parallel to the global (x2;x3)-plane when the tower is

not deflected. The position of the x02-axis is determined by the phase angle FðtÞ from the global x2-axis to the
local x02-axis with the sign definition shown in Fig. 1b. The x03-axis is oriented from the hub towards the free
end. Then, the x01- and x02-axes define the blade and edgewise directions, respectively. The shear centres of the
cross sections along the beam are assumed to be positioned on the x03-axis.

The wing is decoupled from the nacelle and the tower by introducing prescribed linear translation and
rotation vectors u0ðtÞ and h0ðtÞ with the global and local coordinates ui;0ðtÞ, yi;0ðtÞ and u0i;0ðtÞ, y

0
i;0ðtÞ. To simplify

matters further, only the deformation components u1;0ðtÞ and y2;0ðtÞ are considered, as shown in Fig. 1b.
Additionally, these components, which are causing quasi-static displacements merely in the blade direction,
are assumed to be related through the fundamental eigenmode of the tower. Hence, the following support
point motions are assumed:

u1;0ðtÞ ¼ uðtÞ; y2;0ðtÞ ¼ Y2;0uðtÞ; u2;0ðtÞ ¼ u3;0ðtÞ ¼ y1;0ðtÞ ¼ y3;0ðtÞ ¼ 0. (1)

The modal coordinate of the tower uðtÞ may be interpreted as the physical horizontal displacement of the
nacelle.

The base unit vectors of the fixed ðx1; x2;x3Þ and the movable ðx01;x
0
2;x
0
3Þ-coordinate system are denoted as ij

and i0jðtÞ, j ¼ 1; 2; 3, respectively. The transformation between the said base vectors and the local and global
components v0i and vj of a vector v is given as

i0iðtÞ ¼ AijðtÞij ; v0i ¼ AijðtÞvj . (2)

In Eq. (2) and below the summation convention over dummy indices has been applied. Dummy Latin indices
range over 1, 2 and 3, and dummy Greek indices over 1 and 2.
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The coordinate transformation matrix AðtÞ is found to be

AðtÞ ¼

�1 0 0

0 cosF � sinF

0 � sinF � cosF

2
64

3
75

cos y2;0 0 � sin y2;0
0 1 0

sin y2;0 0 cos y2;0

2
64

3
75. (3)

The time-derivative of FðtÞ specifies the rotational frequency of the rotor

OðtÞ ¼ _FðtÞ. (4)

Then the local components of the support point motion become u0i;0ðtÞ ¼ Ai1ðtÞuðtÞ and y0i;0ðtÞ ¼ Ai2Y2;0uðtÞ.
Hence, the local components become

u00ðtÞ ¼

�uðtÞ cos y2;0
�uðtÞ sinF sin y2;0
�uðtÞ cosF sin y2;0

2
64

3
75; h00ðtÞ ¼

0

Y2;0uðtÞ cosF

�Y2;0uðtÞ sinF

2
64

3
75. (5)

To simplify matters, the effects on the hub displacement from the rotation y2;0 are disregarded. Hence,
u01;0ðtÞ ’ �uðtÞ, u02;0ðtÞ ¼ u03;0ðtÞ ’ 0.

2.2. Modal equations of motion

In order to discretize the variational equations, obtained from the principle of virtual work in Larsen and
Nielsen [1], the displacement components u0aðx

0
3; tÞ and the variational field du0aðx

0
3Þ are represented by the

following modal expansion:

u0aðx
0
3; tÞ ’

X1
j¼1

FðjÞa ðx
0
3ÞqjðtÞ; du0aðx

0
3; tÞ ¼

X1
j¼1

FðjÞa ðx
0
3ÞdqjðtÞ, (6)

where u01ðx
0
3; tÞ is the deformation component in the blade direction and u02ðx

0
3; tÞ is the deformation component

in the edgewise direction. qjðtÞ denotes the modal coordinates and FðjÞa ðx
0
3Þ represents the undamped

eigenmodes, where upper index denotes the mode number and lower index indicates the component. FðjÞa ðx
0
3Þ

has been solved by means of an finite element method, which also provides all necessary derivatives of the
eigenmodes. The eigenmodes have been determined for a constant referential rotational frequency O0 in such a
way that they decouple the constant linear terms together with a quasi-static referential contribution due to
centrifugal force from O0. The self-adjoint eigenvalue problem for determining FðjÞa ðx

0
3Þ is given in Larsen and

Nielsen [1].
Eq. (6) is used in the variational equation. Assuming that the rotational speed is constant, i.e. OðtÞ ¼ O0,

then the mode shapes decouple the non-gyroscopic linear terms in the variational equations. The resulting
ordinary differential equations for the modal coordinates when including all terms become

X1
j¼1

ðmij €qj þ cijðtÞ _qj þ kijðtÞqjÞ þ
X1
j¼1

X1
k¼1

ðaijkðtÞqjqk þ bijkðtÞqj _qkÞ

þ
X1
j¼1

X1
k¼1

X1
l¼1

ðdijklqjqkql þ gijklðqj _qk _ql þ qjqk €qlÞÞ ¼ f iðtÞ, ð7Þ

where

mij ¼Midij ,

cijðtÞ ¼ 2zioiMidij þ

Z L

0

mFðiÞa EabF
ðjÞ
b dx03,

kijðtÞ ¼Mio2
i dij þ

Z L

0

mFðiÞa DabF
ðjÞ
b �

qFðiÞa
qx03

qFðjÞa
qx03

Z L

x0
3

mD33x03 dx03

" #
dx03. ð8Þ
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In Eq. (8) and below the summation convention has been abandoned over the modal coordinate indices.
The components of D and E specify centrifugal and various Coriolis acceleration terms, respectively, and are
given as

EðtÞ ¼ 2

0 �_y
0

3;0
_y
0

2;0

_y
0

3;0 0 �O

�_y
0

2;0 O 0

2
66664

3
77775,

DðtÞ ¼

_y
02

3;0 þ
_y
02

2;0 �_y
0

2;0Oþ €y
0

3;0 �
_y
0

3;0O� €y
0

2;0

�_y
0

2;0O� €y
0

3;0
_y
02

3;0 þ O2 �_y
0

3;0
_y
0

2;0 þ
_O

�_y
0

3;0Oþ €y
0

2;0 �
_y
0

3;0
_y
0

2;0 �
_O _y

02

2;0 þ O2

2
66664

3
77775. ð9Þ

Further, in cijðtÞ a damping term has been introduced via the modal damping ratio zi accounting for structural
and aerodynamic damping. As seen, the first and second derivatives of the support point rotations y02;0ðtÞ and
y03;0ðtÞ cause parametric excitation in the linear terms. The nonlinear coupling coefficients in Eq. (7) are defined
as follows:

aijkðtÞ ¼

Z L

0

qFðiÞa
qx03

qFðjÞa
qx03

Z L

x0
3

�p00b;A
qFðkÞb
qx03
� mD3bF

ðkÞ
b

" #
dx03 þ

1

2
FðiÞa p00b;A

qFðjÞa
qx03

qFðkÞb
qx03

" #
dx03,

bijkðtÞ ¼

Z L

0

qFðiÞa
qx03

qFðjÞa
qx03

Z L

x0
3

�mE3bF
ðkÞ
b dx03

" #
dx03,

dijkl ¼

Z L

0

1

2
eaZEI 00abebx

q2FðiÞZ
qx023

qFðjÞx
qx03

qFðkÞg
qx03

q2FðlÞg
qx023

þ
q2FðlÞx
qx023

qFðiÞZ
qx03

qFðjÞg
qx03

q2FðkÞg
qx023

"

þ
q2FðlÞx
qx023

qFðjÞZ
qx03

qFðiÞg
qx03

q2FðkÞg
qx023

þ
q2FðlÞx
qx023

qFðjÞZ
qx03

qFðkÞg
qx03

q2FðiÞg
qx023

#
dx03,

gijkl ¼

Z L

0

qFðiÞa
qx03

qFðjÞa
qx03

Z L

x0
3

m
Z x0

3

0

qFðkÞb
qx03

qFðlÞb
qx03

dx03

" #
dx03

" #
dx03,

f iðtÞ ¼

Z L

0

FðiÞa ðp
00
a;A � mð €u0a;0 þDa3x03ÞÞdx03. ð10Þ

As seen, the parametric excitation from y02;0ðtÞ and y03;0ðtÞ is also present in the quadratic nonlinear coupling
terms aijkðtÞ and bijkðtÞ. By contrast, the support point displacement u01;0ðtÞ only enters the equations as an
additive load term via the modal loads f iðtÞ. bijkðtÞ and gijkl are quadratic and cubic nonlinear coupling
coefficients originating from inertial nonlinearities, whereas dijkl is a purely geometrical nonlinear term from
the nonlinear description of the curvature. The quadratic nonlinear coupling coefficients aijkðtÞ include both
contributions from the rotation of the aeroelastic loads and from the support point rotations. The parameters
E and I 00ab are the elasticity module and the moment of inertia, respectively. p00a;A indicates the aerodynamic
loading, which is approximated by a harmonic variation with the rotational frequency O0. The same variation
was also assumed in Larsen and Nielsen [1]. As a result of the rotation during deformation of the beam, the
fixed basis ði01; i

0
2; i
0
3Þ is rotated into a new basis ði001 ; i

00
2 ; i
00
3Þ defining a local ðx001 ;x

00
2 ;x
00
3Þ coordinate system. I 00ab and

p00a;A are determined in this deformed coordinate system.
In the following numerical analyses only the two lowest modes are retained in the modal expansion. The

components of the modal modes are given in Appendix A together with the wing characteristics including
chord length, thickness, moment of inertia and mass distribution throughout the wing. Larsen and Nielsen [1]
found that the equations of motion of the modal coordinates may be reduced without significant changes in
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the frequency response. The reduced equations are used in the following analyses and are given as

M1ð €q1 þ 2z1o1 _q1 þ o2
1q1Þ þ c12ðtÞ _q2 þ k11ðtÞq1 þ k12ðtÞq2 þ a111ðtÞq

2
1 þ ða112ðtÞ þ a121ðtÞÞq1q2

þ b111ðtÞq1 _q1 þ b112ðtÞq1 _q2 þ b121ðtÞq2 _q1 þ d1111q3
1 þ ðd1112 þ d1121 þ d1211Þq

2
1q2

þ g1111ðq1 _q
2
1 þ q2

1 €q1Þ þ g1211ðq2 _q
2
1 þ q1q2 €q1Þ ¼ f 1ðtÞ,

M2ð €q2 þ 2z2o2 _q2 þ o2
2q2Þ þ c21ðtÞ _q1 þ k21ðtÞq1 þ k22ðtÞq2 þ a211ðtÞq

2
1 þ ða212ðtÞ þ a221ðtÞÞq1q2

þ b211ðtÞq1 _q1 þ b212ðtÞq1 _q2 þ b221ðtÞq2 _q1 þ d2111q3
1 þ ðd2112 þ d2121 þ d2211Þq

2
1q2

þ g2111ðq1 _q
2
1 þ q2

1 €q1Þ þ g2211ðq2 _q
2
1 þ q1q2 €q1Þ ¼ f 2ðtÞ. ð11Þ

3. Harmonic response analysis

In the following the support point motion is assumed to vary harmonically with amplitude u0 and circular
frequency o0 as

uðtÞ ¼ u0 coso0t. (12)

Hence, the excitation period is T0 ¼ 2p=o0. The equations of motion (11) are solved numerically by means of
a fourth-order Runge–Kutta method with a time step length of Dt ¼ T0=500 s and initial conditions
q1ð0Þ ¼ q2ð0Þ ¼ 1:0m, _q1ð0Þ ¼ _q2ð0Þ ¼ 0:0m=s. Assuming harmonic support point motion together with
harmonic variation of the aerodynamic loading the time-varying coefficients given in Eqs. (8) and (10) can be
recast into time invariant coefficients multiplied by harmonic components. The coefficients are given in
Appendix B. In the following Q1 and Q2 signify the rms value of q1ðtÞ and q2ðtÞ when averaged over one
vibration period T. Initially, the eigenfrequency ratio o2=o1 ¼ 2 is assumed, and the excitation frequency is
specified as o0=O0 ¼ 3. Then, as seen from Eq. (B.1) the modal loads f 1ðtÞ and f 2ðtÞ contain harmonic
components with the circular frequencies mO0;m ¼ 1; . . . ; 4. At first, the equations in Eq. (11) are considered
when only the constant linear terms on the left-hand sides are retained, ignoring all linear parametric,
quadratic parametric and cubic terms. The corresponding solution may be considered a zeroth-order solution
in a perturbation approach, where the linear parametric terms, quadratic parametric terms and cubic terms
represent various first-order perturbations, which are independently investigated below. The circular
frequencies mO0 ¼ m=3o0;m ¼ 1; . . . ; 4, in the additive excitation terms will also be present in the zeroth-
order solution. When any of these frequencies are equal to o1 or o2 ¼ 2o1 resonance appears in the first and
second modes. This happens for the excitation frequency ratios o0=o1 ¼ 3=m and o0=o1 ¼ 6=m, respectively,
as shown by the dashed curve on the frequency response curve in Fig. 2a.

The linear parametric coefficients cijðtÞ and kijðtÞ contain harmonic components with the circular frequencies
2O0 and 4O0. In combination with the harmonic components of the zeroth-order solution the linear
parametric terms will contain harmonics at the circular frequencies mO0 ¼ m=3O0, m ¼ 1; . . . ; 8. When
transferred to the right-hand side these terms may induce resonance at o0=o1 ¼ 3=m and o0=o1 ¼ 6=m,
m ¼ 1; . . . ; 8 in the blade and edgewise modes, respectively. Hence, the resonance peaks for m ¼ 2; 3; 4, present
in the linear response, are influenced by the linear parametric excitation as well. However, as seen by the
unbroken curve on Fig. 2a the influence of the linear parametric terms is insignificant in the blade mode,
whereas the effect in the edgewise mode merely is to reduce the resonance frequencies and introduces weak
coupling between the considered modes.

The quadratic parametric coefficients aijkðtÞ and bijkðtÞ contain harmonic components with the frequencies
1O0, 2O0 and 4O0. In combination with the harmonic components of the zeroth-order solution the quadratic
nonlinear terms will contain harmonics at the frequencies mO0 ¼ m=3o0, m ¼ 1; . . . ; 12. When transferred to
the right-hand side these terms may induce resonance at o0=o1 ¼ 3=m and o0=o1 ¼ 6=m, m ¼ 1; . . . ; 12. In
Fig. 2b it is seen that the resonance peaks for m ¼ 2; 3; 4 become unstable in the blade mode when quadratic
nonlinear terms are included, which mean that these terms introduce parametric instability. In the edgewise
mode resonance peaks are visible for o0=o1 ¼ 3=4 and o0=o1 ¼ 1 corresponding to m ¼ 4; 6. Additionally,
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(a)

(b)

(c)

(d)

Fig. 2. Influence of linear parametric, quadratic parametric and cubic terms, u0 ¼ 0:3m, z1 ¼ z2 ¼ 0:01, o0=O0 ¼ 3:0, o2=o1 ¼ 2:0. (– –)

Zeroth-order solution. (a) (—) Zeroth-order solution in combination with the linear parametric terms. (b) (—) Zeroth-order solution in

combination with the quadratic parametric terms. (c) (—) Zeroth-order solution in combination with the cubic parametric terms. (d) (—)

The full model.
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chaotic behaviour or infinite response of the system may occur for o0=o142, corresponding to o04o2, which
is not brought forward by the linear parametric terms.

The cubic zeroth-order solution terms contain harmonics at the frequencies mO0 ¼ m=3o0, m ¼ 1; . . . ; 12.
When transferred to the right-hand side these terms may induce resonance at o0=o1 ¼ 3=m and o0=o1 ¼ 6=m,
m ¼ 1; . . . ; 12, as was the case for the quadratic parametric terms. In Fig. 2c it is seen that the cubic terms
influence the blade mode by curving the resonance peaks to the right. In the edgewise mode extra resonance
peaks occur for o0=o1 ’ 3=4 and o0=o1 ’ 1:0 corresponding to m ¼ 4; 6, as was the case for the quadratic
parametric terms.

Finally, in Fig. 2d the full model is compared with the linear response. Due to both the quadratic parametric
terms and the cubic terms the response becomes chaotic for o0=o141:5. Comparison of Figs. 2b–d indicates
that the response in the region o0=o141:5 is mainly influenced by the quadratic parametric terms, while at
o0=o1o1:5 the cubic terms are the main source for changes compared to the zeroth-order solution.

It should be noted that at certain resonance peaks the deformation exceeds 30m, which obviously is
considered a failure situation. But considering the stability of the system a limited response is obtained when
including the cubic terms. As mentioned, the cubic terms tend to curve the peaks, which give the possibility of
multiple solutions at given frequencies, e.g. o0=o1 ’ 0:78 and o0=o1 ’ 1:08. However, the curving of the
peaks is relatively small and multiple solutions are only obtained in a very narrow frequency band around the
resonance peaks. The frequency response curves have been obtained from several different initial conditions.
Identical curves are produced independent of the choice of initial conditions, and the possibility of multiple
solutions has not been further investigated.

The additive loading includes among others the product of the harmonic components cosðo0tÞ and cosðO0tÞ,
see Eq. (B.1). It turns out that the response period is determined from the interference of the response caused
by the circular frequencies o0 þ O0 and o0 � O0. The corresponding periods become

Tþ ¼
2p

o0 þ O0
¼

T0

1þ O0=o0
; T� ¼

2p
o0 � O0

¼
T0

1� O0=o0
. (13)

In order to find the combined period of the response T the following ratios are evaluated

T

Tþ
¼ n 1þ

mO0

o0

� �
;

T

T�
¼ n 1�

mO0

o0

� �
. (14)

The factor n is found as the minimum value at which both T=Tþ and T=T� attain integer values. Poincaré
maps of 2000 excitation periods are plotted in Fig. 3 for various ratios of o0=O0. The amplitude is u0 ¼ 0:3m,
the damping ratios z1 ¼ z2 ¼ 0:01 and the frequency ratio o0=o1 ¼ 0:8. ð�Þ indicate the phase value ðq1; _q1Þ for
every excitation period T0, and ð�Þ indicates the phase value at every response period T. As seen the period
tends towards infinity as o0=O0 becomes irrational. As an example o0=O0 ¼ 3:14159 results in n ¼ 314 159.
For an irrational frequency ratio a so-called almost periodic response is achieved in which case a continuous
closed curve is obtained in the phase plane for the Poincaré map. As seen from Fig. 3 the amplitude of q1ðtÞ

increases as o0=O0 is increased. The reason is that the fundamental blade circular eigenfrequency for the
considered example is given as o1=O0 ¼ 3:2125. Hence, the simulations tend towards resonance in the
fundamental eigenmode as o0=O0 is increased.

4. Parametric stability analysis

In order to investigate the stability of a given motion qi;0ðtÞ, consider the following perturbed motion
assumed to fulfil (11)

qiðtÞ ¼ qi;0ðtÞ þ DqiðtÞ, (15)

where DqiðtÞ is a small perturbation to the referential solution. Insertion of Eq. (15) in Eq. (11)
and disregarding quadratic and cubic terms of DqiðtÞ gives the following equations of motion for the
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(a)

(b)

(c)

(d)

Fig. 3. Poincaré map at various excitations frequency ratios and the corresponding time series of q1ðtÞ shown for one response period T.

u0 ¼ 0:3m, z1 ¼ z2 ¼ 0:01, o2=o1 ¼ 2:0, o0=o1 ¼ 0:8. (a) o0=O0 ¼ 3, n ¼ 3. (b) o0=O0 ¼ 3:1, n ¼ 31. (c) o0=O0 ¼ 3:14, n ¼ 157.

(d) Chaotic response, o0=O0 ¼ 3, o0=o1 ¼ 2:3.
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perturbation DqiðtÞ

M1ðD €q1 þ 2z1o1D _q1 þ o2
1Dq1Þ þ c12ðtÞD _q2 þ k11ðtÞDq1 þ k12ðtÞDq2

þ 2a111ðtÞq1;0Dq1 þ ða112ðtÞ þ a121ðtÞÞðq1;0Dq2 þ q2;0Dq1Þ

þ b111ðtÞðq1;0D _q1 þ _q1;0Dq1Þ þ b112ðtÞðq1;0D _q2 þ _q2;0Dq1Þ

þ b121ðtÞðq2;0D _q1 þ _q1;0Dq2Þ þ 3d1111q2
1;0Dq1

þ ðd1112 þ d1121 þ d1211Þð2q1;0q2;0Dq1 þ q2
1;0Dq2Þ

þ g1111ð2 _q1;0q1;0D _q1 þ _q2
1;0Dq1 þ 2 €q1;0q1;0Dq1 þ q2

1;0D €q1Þ

þ g1211ð2 _q1;0q2;0D _q1 þ _q2
1;0Dq2 þ €q1;0q2;0Dq1 þ q1;0 €q1;0Dq2 þ q1;0q2;0D €q1Þ ¼ 0, ð16Þ

M2ðD €q2 þ 2z2o2D _q2 þ o2
2Dq2Þ þ c21ðtÞD _q1 þ k21ðtÞDq1 þ k22ðtÞDq2

þ 2a211ðtÞq1;0Dq1 þ ða212ðtÞ þ a221ðtÞÞðq1;0Dq2 þ q2;0Dq1Þ

þ b211ðtÞðq1;0D _q1 þ _q1;0Dq1Þ þ b212ðtÞðq1;0D _q2 þ _q2;0Dq1Þ

þ b221ðtÞðq2;0D _q1 þ _q1;0Dq2Þ þ 3d2111q2
1;0Dq1

þ ðd2112 þ d2121 þ d2211Þð2q1;0q2;0Dq1 þ q2
1;0Dq2Þ

þ g2111ð2 _q1;0q1;0D _q1 þ _q2
1;0Dq1 þ 2 €q1;0q1;0Dq1 þ q2

1;0D €q1Þ

þ g2211ð2 _q1;0q2;0D _q1 þ _q2
1;0Dq2 þ €q1;0q2;0Dq1 þ q1;0 €q1;0Dq2 þ q1;0q2;0D €q1Þ ¼ 0. ð17Þ

The equations for the perturbation (16) and (17) may be recast into the following state vector formulation

_vðtÞ ¼ AðtÞvðtÞ,

vðtÞ ¼ ½Dq1ðtÞ Dq2ðtÞ D _q1ðtÞ D _q2ðtÞ�
T; AðtÞ ¼

I 0

0 MðtÞ

" #�1
0 I

�KðtÞ �CðtÞ

" #
, (18)

where the components of KðtÞ, CðtÞ and MðtÞ are given as

K11ðtÞ ¼M1o2
1 þ k11 þ 2a111q1;0 þ ða112 þ a121Þq2;0 þ b111 _q1;0 þ b112 _q2;0 þ 3d1111q2

1;0

þ 2ðd1112 þ d1121 þ d1211Þq1;0q2;0 þ g1111ð _q
2
1;0 þ 2 €q1;0q1;0Þ þ g1211 €q1;0q2;0,

K12ðtÞ ¼ k12 þ ða112 þ a121Þq1;0 þ b121 _q1;0

þ ðd1112 þ d1121 þ d1211Þq
2
1;0 þ g1211ð _q

2
1;0 þ q1;0 €q1;0Þ,

K21ðtÞ ¼ k21 þ 2a211q1;0 þ ða212 þ a221Þq2;0 þ b211 _q1;0 þ b212 _q2;0 þ 3d2111q2
1;0

þ 2ðd2112 þ d2121 þ d2211Þq1;0q2;0 þ g2111ð _q
2
1;0 þ 2 €q1;0q1;0Þ þ g2211 €q1;0q2;0,

K22ðtÞ ¼M2o2
2 þ k22 þ ða212 þ a221Þq1;0 þ b221 _q1;0

þ ðd2112 þ d2121 þ d2211Þq
2
1;0 þ g2211ð _q

2
1;0 þ q1;0 €q1;0Þ, ð19Þ

C11ðtÞ ¼ 2M1z1o1 þ b111q1;0 þ b121q2;0 þ 2g1111 _q1;0q1;0 þ 2g1211 _q1;0q2;0,

C12ðtÞ ¼ c12 þ b112q1;0,

C21ðtÞ ¼ c21 þ b211q1;0 þ b221q2;0 þ 2g2111 _q1;0q1;0 þ 2g2211 _q1;0q2;0,

C22ðtÞ ¼ 2M2z2o2 þ b212q1;0, ð20Þ
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M11ðtÞ ¼M1 þ g1111q2
1;0 þ g1211q1;0q2;0,

M12 ¼ 0,

M21ðtÞ ¼ g2111q2
1;0 þ g2211q1;0q2;0,

M22 ¼M2. ð21Þ

Solving Eq. (11) for q1;0ðtÞ and q2;0ðtÞ, the time-dependent components of KðtÞ, CðtÞ and MðtÞ are found,
and the linearized equations (16) and (17) may be solved. The stability of the system may then be
evaluated by the Floquet theory in case of periodic response [3] or by Lyapunov exponents as described by
Wolf et al. [4].

Next, the numerical analyses are carried out with independent variation of the frequency ratios o0=o1,
o2=o1 and with o0=O0 and u0 ¼ 0:3 and 0.5m. In light of the previous analysis showing the insufficiency of
the Floquet theory, stability boundaries are in all cases found using Lyapunov exponents. In all the following
analyses the circular eigenfrequency of the first mode is kept constant at o1 ¼ 5:14 rad=s. At the numerical
integration, Eqs. (11) and (18) are solved simultaneously. The rms values of the response Q1 and Q2 are
determined using time series of 1000 excitation periods T0.

The first analysis is made with constant excitation ratio o0=O0 ¼ 3:0. The result is illustrated in Fig. 4 in
terms of contour curves of the various response quantities. Figs. 4a and b show contour curves of Q1 at 5, 10
and 20m and Q2 at 0.5, 2 and 4m as functions of o0=o1 and o2=o1. In Fig. 4c the contour curve at 0 is shown
for the largest Lyapunov exponent, indicating areas where the solution is unstable. The regions indicated by
( ) show where chaotic response occurs and ð’Þ indicates regions with infinite response. Since o1 is kept
constant and only o2 is varied in the fraction o2=o1, the positions of resonance peaks of the first mode are
independent of o2=o1. Correspondingly, the positions of resonance peaks of the second mode vary linearly
with o2=o1. In Fig. 4a peaks are present at o0=o1 ’ 0:75 and 1.0, which remain constant to variations in
o2=o1, and hence represent resonance peaks of the first mode. At frequencies o0=o141:1 large regions of
unstable response occur. The limit o0=o1 ¼ 1:1 is relatively constant with variation of o2=o1. Within the
region o0=o141:1 two different areas exist divided by an almost constant line with respect to variation of
o0=o1 located at o2=o1 ’ 2:2. Below this limit the system produces infinite response in most part of the
unstable region, while above the limit chaotic response exists in all unstable regions. Close to the boundary at
o2=o1 ’ 2:2 large regions of stable response exist even above o0=o141:1.

Figs. 5a–c show contour curves for Q1, Q2 and l with u0 ¼ 0:3m, a constant eigenfrequency ratio
o2=o1 ¼ 2:0, and with variable excitation ratio o0=O0. Looking at the figures from left to right it is seen
that the primary resonance peaks located at o0=o1 ¼ 0:75 and 1.0 are relatively unaffected by the excitation
ratio. The combined peak at o0=o1 ¼ 1:5 tends to divide into two peaks as o0=O0 are varied from 3.0.
Finally, the large unstable region to the far right is stabilized as the excitation ratio is increased, while the
unstable region at o0=o1 ’ 1:25 stabilizes with increasing o0=O0. It should be noted that all unstable regions
produce chaotic response with o2=o1 ¼ 2:0, except for a large region at the bottom right, which produces
infinite response. No instability occurs below o0=o1 ¼ 1:1, except for a small region at o0=o1 ’ 0:9 and
o0=O0 ’ 2:5.

Figs. 6a–c show Q1, Q2 and l, respectively with o2=o1 ¼ 2:2. Comparing with the results of Fig. 5 it is seen
that all unstable regions produce chaotic response. Also, the amplitude of the response is significantly reduced,
especially Q2o2m in the considered parameter space. Also in this case the main regions at o0=o141:1 are
unstable. However, regions around o0=o1 ¼ 1:5 and 2.1 produce stable response. Within these stable regions
relatively large response is produced compared with the surrounding chaotic regions.

Finally, the corresponding analysis as shown in Figs. 5 and 6 are carried out with u0 ¼ 0:5m. Stability
regions defined by l are shown in Figs. 7a and b with o2=o1 ¼ 2:0 and o2=o1 ¼ 2:2, respectively. Comparing
Fig. 7a with Fig. 5c reveals that, no significant changes are seen on the stability regions at o0=o1o1:5. The
regions with infinite response is slightly increased due to the influence of quadratic parametric terms.

Comparing Fig. 7b with Fig. 6c shows that for o2=o1 ¼ 2:2 no significant changes of the stability regions
occur while increasing u0. It should be noted that no regions with infinite response occur.

To validate the stability determined by Lyapunov exponents, stability is determined as function of u0 and z1
with o0=O0 ¼ 3:0, o2=o1 ¼ 2:2 and o0=o1 ¼ 1:7. While simulating the response the periodicity of the
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response is investigated by a residual r given as

r ¼ ððq1ðtÞ � q1ðtþ TÞÞ2 þ ðq2ðtÞ � q2ðtþ TÞÞ2

þ ð _q1ðtÞ � _q1ðtþ TÞÞ2 þ ð _q2ðtÞ � _q2ðtþ TÞÞ2Þ1=2, ð22Þ

where T is found from Eq. (14). The residual r is an indication of the periodicity of the response assuming that
T is the response period, i.e. if r ¼ 0 the response is periodic. Since the analysis is made by means of numerical
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(a)

(b)

(c)

Fig. 4. Contour curves for analysis made with constant excitation ratio o0=O0 ¼ 3:0. u0 ¼ 0:3m. (a) Q1 [m]. ( ) Q145m, ( )Q1410m,

(’) Q1420m. (b) Q2 [m]. ( ) Q240:5m, ( ) Q242m, ð’Þ Q244m. (c) Largest Lyapunov exponent l [-]. ð’Þ l40, ð’Þ infinite

response.
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integration, an upper limit of r is defined for the response to be assumed periodic with the period T. A periodic
response is assumed when ro0:001. When r40:001 non-periodic response is assumed. The result is shown in
Fig. 8 where ( ) indicates regions with l40 and (—) is the contour line for r ¼ 0:001. The residual assumes
that the period T is determined from Eq. (14), this might not be the case while including nonlinear terms.
However, the numerical simulations show good agreement between the stability boundary determined by the
residual and determined by the Lyapunov exponent.
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(a)

(b)

(c)

Fig. 5. Contour curves for analysis made with constant eigenfrequency ratio o2=o1 ¼ 2:0. u0 ¼ 0:3m. (a) Q1 [m]. ( ) Q145m, ( )

Q1410m, ð’Þ Q1420m. (b) Q2 [m]. ( ) Q240:5m, ( ) Q242m, ð’Þ Q244m. (c) Largest Lyapunov exponent l [-]. ( ) l40, ð’Þ

infinite response.
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5. Concluding remarks

The nonlinear parametric instability of a wind turbine wing model as a 2dof system retaining up to cubic
terms has been analysed at various excitation ratios between the support point excitation frequency and the
rotational frequency of the rotor and at various eigenfrequency ratios.

For ordinary three-bladed wind turbines, the dominating tower frequency in proportion to the rotational
frequency is close to 3. For large wind turbines the eigenfrequency ratio of the fundamental modes may be
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(a)

(b)

(c)

Fig. 6. Contour curves for analysis made with constant eigenfrequency ratio o2=o1 ¼ 2:2. u0 ¼ 0:3m. (a) Q1 [m]. ( ) Q145m, ( )

Q1410m, ð’Þ Q1420m. (b) Q2 [m]. ( ) Q240:5m, ( ) Q242m, ð’Þ Q244m. (c) Largest Lyapunov exponent l [-]. ( ) l40, ð’Þ

infinite response.
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close to 2. Since this may introduce 2:1 internal resonance, the numerical analysis is centred around these
frequency ratios.

It is shown that the parametric instability mainly is influenced by quadratic parametric terms. These terms
may produce large regions of chaotic response for fixed excitation ratios. Furthermore, it is shown that cubic
nonlinear terms have a significant stabilizing effect at given resonance frequencies.
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(a)

(b)

Fig. 7. Contour curves for l ¼ 0 at various constant eigenfrequency ratio. u0 ¼ 0:5m. ( ) l40, ð’Þ infinite response. (a) o2=o1 ¼ 2:0, (b)
o2=o1 ¼ 2:2.

Fig. 8. Contour curves for l and r. o2=o1 ¼ 2:2, o0=O0 ¼ 3:0, o0=o1 ¼ 1:7. ( ) l40, (—) contour line for r ¼ 0:001.
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At irrational excitation ratios the response is shown to be almost periodic. Hence, the Floquet theory is not
applicable for analysing the stability of the system. At rational excitation ratios the response becomes periodic.
However, the Floquet theory is only useful for finding stability boundaries in case of relatively short response
periods. Instead, the theory of Lyapunov exponents is used for analysing the stability of the system.

Using numerical simulations it is shown that within a relatively small frequency band around o2=o1 ¼ 2:2
stable regions appear for o0=o141:1 in all other cases unstable response mainly occur in this region. With
o2=o142:2 chaotic response is produced while the response becomes infinite at o2=o1o2:2. No significant
changes of the stability regions appear when increasing u0 except for smaller regions, which change character
from chaotic to infinite response when o2=o1 ¼ 2:0.

The indicated results refer to a 2dof reduced system including only the two lowest fundamental modes. The
reduced model is convenient when working with control algorithms of wind turbines where only a few modes
are observable. However, at resonance excitation frequencies, energy may transfer to higher modes via
nonlinear couplings. The energy leakage from lower to higher modes may introduce qualitative and
quantitative changes to the frequency response. The effect of this energy leakage on the qualitative and
quantitative results presented in the study will be further analysed in a succeeding study.
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Appendix A. Wing specifications

The theory is demonstrated using a 46m wing. The aerodynamic profiles are NACA 63-418 section profile
as illustrated in Fig. 11, scaled with chord and height values indicated in Fig. 12d. The inner 2.0m of the wing
has a circular cross section with 2.0m in diameter. The wing has a total weight of 10 t. The stiffness and mass
distribution are chosen so that the eigenfrequencies match approximately to those given by the manufacture of
a corresponding wing size. The twist throughout the wing is chosen so that the angle of attack of the resulting
wind is approximately 6� at a constant rotational speed of 1:6 s�1, and an incoming wind velocity of 12m/s.
The elasticity module is constant throughout the wing given as E ¼ 3� 1010 Pa (Figs. 9–12).

The fundamental blade and edgewise eigenmodes are illustrated in Fig. 9. The components in the x01 and x02
directions are shown in Fig. 10 with the dominating components normalized to 1 at the wing tip. The
components determined by the Bernoulli–Euler beam theory are plotted as ( ) and (—) for the component
in the x01 and x02 directions, respectively. As seen, a considerable edgewise component is present in the blade
mode Fð1Þ and an even more dominating blade component is present in the edgewise mode Fð2Þ. The circular
eigenfrequency of the first mode is 5.14 rad/s and the modal masses are M1 ¼ 427:9 and M2 ¼ 852:1 kg. The
wing has the twist angle, the mass, local moments of inertia, chord length and thickness distributions as
indicated in Fig. 12. The structural damping in the edgewise mode is kept constant at the modal damping ratio
z2 ¼ 0:01. The lift and drag coefficients are assumed to be

cL ¼ 1:5; cD ¼ 0:05. (A.1)
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Fig. 9. (a) First eigenmode Fð1Þ, (b) second eigenmode Fð2Þ.
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Appendix B. Time-dependent coefficients

Harmonic support point motion given in Eq. (12) is assumed in addition to harmonic variation of the
aerodynamic loading then, the time varying coefficients cijðtÞ, kijðtÞ, aijkðtÞ, bijkðtÞ and f iðtÞ given in Eqs. (8)
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(a) (b)

Fig. 10. Components of eigenmodes. ( ) F1, (—) F2. (a) First eigenmode Fð1Þ, (b) second eigenmode Fð2Þ.

Fig. 11. Normalized profile of a NACA 63-418 wing section.

(a)

(c)

(b)

(d)

Fig. 12. (a) Twist angle throughout the beam, (b) mass per unit length, (c) distribution of local moment of inertia. (—) I 0011, (– –) I 0012, ( )

I 0022. (d) (—) Chord length c. ( ) Thickness t of cross-sections.
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and (10) may be written as

kijðtÞ ¼ � kij;11Y2
2;0 _u

2ðtÞ þ kij;12Y2;0ð €uðtÞ sinO0tþ _uðtÞO0 cosO0tÞ

þ kij;21Y2;0ð� €uðtÞ sinO0tþ _uðtÞO0 cosO0tÞ

þ kij;22ð�Y2
2;0 _u

2ðtÞsin2O0t� O2
0Þ þ kij;33Y2

2;0 _u
2ðtÞ cos2O0t,

cijðtÞ ¼ � cij;1 _uðtÞY2;0 sinO0t,

aijkðtÞ ¼ aijk;0ðtÞ � aijk;1Y2;0ð €uðtÞ cosO0tþ _uðtÞO0 sinO0tÞ � aijk;2Y2
2;0 _u

2ðtÞ sinO0t cosO0t,

bijkðtÞ ¼ � bijk;1Y2;0 _uðtÞ cosO0tþ bijk;2O0,

f iðtÞ ¼ f i;0ðtÞ þ f i;1Y2;0ð €uðtÞ cosO0t� O0 _uðtÞ sinO0tÞ � f i;2Y
2
2;0 _u

2ðtÞ sinO0t cosO0tþ f i;3 €uðtÞ, ðB:1Þ

where the time-independent coefficients are found to be

cij;1 ¼ 2

Z L

0

mð�FðiÞ1 FðjÞ2 þ FðiÞ2 FðjÞ1 Þdx03,

kij;ab ¼

Z L

0

mFðiÞa FðjÞb dx03; kij;33 ¼

Z L

0

qFðiÞa
qx03

qFðjÞa
qx03

Z L

x0
3

mx03 dx03

" #
dx03,

aijk;a ¼

Z L

0

qFðiÞb
qx03

qFðjÞb
qx03

Z L

x0
3

�mFðkÞa dx03

" #
dx03; bijk;a ¼ 2aijk;a,

f i;a ¼ �

Z L

0

FðiÞa mx03 dx03; f i;3 ¼

Z L

0

FðiÞ1 mdx03. ðB:2Þ

The incoming wind velocity V 01ðx
0
3; tÞ as seen from a considered cross section of the wing varies periodically

with the rotational speed O0. V 01ðx
0
3; tÞ is assumed to vary logarithmically in the following way

V 01ðx
0
3; tÞ ¼ V 0

ln x3

ln h
¼ V0

lnðh� x03 cosO0tÞ

ln h
, (B.3)

where V 0 is the undisturbed mean wind velocity and h is the height of the rotor axis. The rotational wind
velocity is given as V 02ðx

0
3Þ ¼ x03O0. Then, the resulting wind velocity V ðx03; tÞ may be written as

V ðx03; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 021 ðx

0
3; tÞ þ V 022 ðx

0
3Þ

q
. (B.4)

Based on Eq. (B.4) the following expression for the aerodynamic loads is derived:

p001;Aðx
0
3; tÞ ¼

1

2
rV 2ðx03; tÞcðx

0
3ÞcL ’ p001;A;0ðx

0
3Þ þ Dp001;A;1ðx

0
3Þ cosO0t,

p002;Aðx
0
3; tÞ ¼

1

2
rV 2ðx03; tÞcðx

0
3ÞcD ’ p002;A;0ðx

0
3Þ þ Dp002;A;1ðx

0
3Þ cosO0t. (B.5)

p00a;A;0ðx
0
3Þ denotes the mean value of p00a;Aðx

0
3; tÞ, when the wing is at the top and bottom positions.

Correspondingly, Dp00a;A;1ðx
0
3Þ denotes half of the difference between these extreme values. cL and cD are

the lift and drag coefficients. The coefficients aijk;0ðtÞ and f i;0ðtÞ in Eq. (B.1) may then be written in the
following way:

aijk;0ðtÞ ¼ aijk;00 þ Daijk;01 cosO0t; f i;0ðtÞ ¼ f i;00 þ Df i;01 cosO0t (B.6)
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with

aijk;00 ¼

Z L

0

qFðiÞa
qx03

qFðjÞa
qx03

Z L

x0
3

�p00b;A;0
qFðkÞb
qx03

" #
dx03 þ

1

2
FðiÞa p00b;A;0

qFðjÞa
qx03

qFðkÞb
qx03

" #
dx03,

Daijk;01 ¼

Z L

0

qFðiÞa
qx03

qFðjÞa
qx03

Z L

x0
3

�Dp00b;A;1
qFðkÞb
qx03

" #
dx03 þ

1

2
FðiÞa Dp00b;A;1

qFðjÞa
qx03

qFðkÞb
qx03

" #
dx03,

f i;00 ¼

Z L

0

FðiÞa p00a;A;0 dx03; Df i;01 ¼

Z L

0

FðiÞa Dp00a;A;1 dx03. ðB:7Þ
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